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1 Summary

A Bely̆ı map β : P1(C) → P1(C) is a rational function with at most three critical values; we may
assume these values are {0, 1, ∞}. A Dessin d’Enfant is a planar bipartite graph obtained by
considering the preimage of a path between two of these critical values, usually taken to be the line
segment from 0 to 1. Such graphs can be drawn on the sphere by composing with stereographic
projection: β−1

(
[0, 1]

)
⊆ P1(C) ' S2(R). Replacing P1 with an elliptic curve E, there is a similar

definition of a Bely̆ı map β : E(C) → P1(C). Since E(C) ' T2(R) is a torus, we call (E, β) a
toroidal Bely̆ı pair. The corresponding Dessin d’Enfant can be drawn on the torus by composing
with an elliptic logarithm: β−1

(
[0, 1]

)
⊆ E(C) ' T2(R).

In this project, we are interested in the group Mon(β) = im
[
π1
(
P1(C) − {0, 1, ∞}

)
→ SN

]
called the monodromy group; it is the “Galois closure” of the group of automorphisms of the graph.
With X being either P1(C) ' S2(R) or E(C) ' T2(R), say that we have two the composition of
Bely̆ı maps

Φ = β ◦ φ : X
φ // P1(C)

β // P1(C) (1)

such that β
(
{0, 1, ∞}

)
⊆ {0, 1, ∞}; then the composition Φ is also a Bely̆ı map. If Mon(β) ≤ SN

and Mon(φ) ≤ SM are the monodromy groups of β and φ, respectively, then Mon(Φ) ≤ SM o SN is
a subgroup of the wreath product SM oSN := SM

N oSN of the symmetric groups. We will discuss
some of the challenges of determining the structure of these various groups.

2 Background

Let X be a compact, connected Riemann surface. There are two examples of interest.

• The projective line P1 may be embedded into the projective plane using the map P1 → P2

which sends (x1 : x0) 7→ (x1 : 0 : x0), so that this curve corresponds to the zeroes of the
polynomial f(x, y) = y. The set of complex points, namely X = P1(C) ' S2(R), is a sphere.

• An elliptic curve E is a nonsingular projective variety corresponding to the zeroes of the form

f(x, y) =
(
y2 + a1 x y + a3 y

)
−
(
x3 + a2 x

2 + a4 x+ a6
)

= 0. (2)

The set of complex points, namely X = E(C) ' T2(R), is a torus.
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A Bely̆ı map β : X → P1(C) is a non-constant meromorphic function which is unbranched outside
of {0, 1, ∞} ⊆ P1(C). Since X may be viewed as the set of zeroes of a single polynomial f(x, y),
we can write β(x, y) = p(x, y)/q(x, y) as the ratio of two polynomials p(x, y) and q(x, y).

3 Monodromy Groups

Fix y0 ∈ P1(C) different from 0, 1, and ∞. Form the collection of affine points

β−1(y0) =

{
(x : y : 1) ∈ P2(C)

∣∣∣∣∣ f(x, y) = 0

p(x, y)− y0 q(x, y) = 0

}
=
{
P1, P2, . . . , PN

}
(3)

there exist unique paths γ̃
(i)
0 , γ̃

(i)
1 : [0, 1]→ X satisfying

β
(
γ̃(i)ε (t)

)
= ε+ (y0 − ε) e2π

√
−1t

γ̃(i)ε (0) = Pi

 where

{
Pi ∈ β−1(y0)

ε = 0, 1
(4)

There exist permutations σ0, σ1, σ∞ ∈ SN such that γ̃
(i)
0 (1) = Pσ0(i), γ̃

(i)
1 (1) = Pσ1(i), and σ∞ =

σ1
−1 ◦ σ0−1 for i = 1, 2, . . . , N . Then Mon(β) = 〈σ0, σ1, σ∞〉 is called the monodromy group of

β. It is a transitive subgroup of SN .

4 Krasner-Kaloujnine Embedding Theorem

Let φ : X → P1(C) and β : P1(C) → P1(C) be two Bely̆ı maps of degrees M = deg(φ) and
N = deg(β), respectively. If β

(
{0, 1, ∞}

)
⊆ {0, 1, ∞}, then the composition Φ = β ◦ φ is a

Bely̆ı map of degree M N . We explain how the monodromy groups Mon(Φ), Mon(φ), and Mon(β)
are related.

• For each Pi ∈ β−1(y0), say that γ̃
(ij)
ε : [0, 1]→ X are those unique paths such that

(β ◦ φ)
(
γ̃(ij)ε (t)

)
= ε+ (y0 − ε) e2π

√
−1t

γ̃(ij)ε (0) = Pij

 where

{
Pij ∈ φ−1(Pi)

ε = 0, 1
(5)

Then γ̃
(i)
ε = φ ◦ γ̃(ij)ε are those unique paths γ̃

(i)
0 , γ̃

(i)
1 : [0, 1]→ P1(C) satisfying

β
(
γ̃(i)ε (t)

)
= ε+ (y0 − ε) e2π

√
−1t

γ̃(i)ε (0) = Pi

 where

{
Pi ∈ β−1(y0)

ε = 0, 1
(6)

Observe that γ̃
(ij)
ε (1) = PIJ where I = σε(i) and J = τ

(i)
ε (j) for some σε ∈ SN and τ

(i)
ε ∈ SM .

Hence we have the following well-defined elements of the wreath product SM oSN = SM
NoSN :

(
τ (1)ε , τ (2)ε , . . . , τ (N)

ε , σε
)

for ε = 0, 1. (7)
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• We have a surjective projection map from G = Mon(β ◦ φ) to Mon(β) whose kernel H =
ker
[
Mon(β ◦ φ) � Mon(β)

]
contains Mon(φ) embedded diagonally.

1 // SM
N // SM o SN // SN // 1

Mon(φ) //
?�

OO

Mon(Φ) //
?�

OO

Mon(β)
?�

OO (8)

In particular, G must be a subgroup of H o (G/H). (This may be viewed as a special case of
the Krasner-Kaloujnine Embedding Theorem.)

5 Examples on the Sphere

Say that X = P1(C) ' S2(R).

• The rational function β(z) = 4 z (1 − z) is a Bely̆ı map of degree N = 2 which satisfies
β
(
{0, 1, ∞}

)
⊆ {0, 1, ∞}. The monodromy group has the generators

σ0 =
(
1 2
)

σ1 =
(
1
)

σ∞ =
(
1 2
) (9)

Hence the monodromy group is Mon(β) = 〈σ0, σ1, σ∞〉 = S2, the symmetric group of degree
2.

• The rational function φ(z) = −(z − 1) (2 z2 + 3 z + 9)3/729 is a Bely̆ı map of degree N = 7.
According to our Mathematica code, the monodromy group has the generators

σ0 =
(
1 5 3

) (
2 4 6

)
σ1 =

(
3 7 4

)
σ∞ =

(
1 3 2 6 4 7 5

) (10)

Hence the monodromy group is Mon(φ) = 〈σ0, σ1, σ∞〉 = A7, the alternating group of degree
7.

• The composition Φ = β ◦ φ is the rational function

Φ(z) = − 4

531441
(z − 1) z3

(
2 z2 + 3 z + 9

)3 (
8 z4 + 28 z3 + 126 z2 + 189 z + 378

)
(11)

which is a Bely̆ı map of degree N = 14. According to our Mathematica code, the monodromy
group has the generators
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σ0 =
(
3 7 5

) (
4 6 8

) (
11 13 12

)
σ1 =

(
1 3
) (

2 4
) (

5 11
) (

6 12
) (

7 9
) (

8 10
) (

13 14
)

σ∞ =
(
1 5 12 4 2 8 10 6 13 14 11 7 9 3

) (12)

Hence the monodromy group is Mon(Φ) = 〈σ0, σ1, σ∞〉 =
(
A7×A7

)
oZ2, the wreath product

of A7 by S2.

6 Examples on the Torus

Say that X = E(C) ' T2(R).

• For any positive integer n, the square of the nth Chebyshev polynomial

β(x) = Tn(x)2 = cos2
(
n · arccos(x)

)
=


x2 for n = 1(
2x2 − 1

)2
for n = 2

x2
(
4x2 − 3

)2
for n = 3

(13)

is a Bely̆ı map of degree N = 2n which satisfies β
(
{0, 1, ∞}

)
⊆ {0, 1, ∞}. When n = 1,

1− β(1− 2 z) = 4 z (1− z), so that Mon(β) = Z2, the cyclic group of order 2.

• Consider the elliptic curve

E : y2 = x (x− 1) (x− λ) where λ = cos
π

2n
. (14)

Then Φ(x, y) = β(x) is a Bely̆ı map of degree N = 4n. Say that n = 1. According to our
Mathematica code, the monodromy group has the generators

σ0 = (1 3) (2 4)

σ1 = (1 2 3 4)

σ∞ = (1 2 3 4)

(15)

Hence the monodromy group is Mon(Φ) = 〈σ0, σ1, σ∞〉 = Z4, the cyclic group of order 4.

7 Future Work

We would like to know more about the structure of G = Mon(β ◦ φ). In particular, we would like
to know more about how H = ker

[
Mon(β ◦ φ) � Mon(β)

]
is related to Mon(φ).
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